359 research outputs found

    Towards improving positioning accuracy of conducting polymer actuators

    Get PDF
    Recently, there have been significant developments in conducting polymers, particularly in their synthesis and use as electromechanical actuators. This is mainly due to their many promising features including biocompatibility, high force to weight ratio, suitability to open loop control. On the other hand, they suffer from nonlinear problems such as hysteresis and creep. With this in mind, it is the aim of this study to evaluate the existence level of these nonlinearities and their mathematical modeling in order to improve the positioning accuracy of conducting polymer actuators. The polymer actuator considered in this study which has a symmetrical structure can operate in both liquid and non-liquid media as opposed to its predecessor. The actuator drives a rigid link, like positioning a payload. The experimental results demonstrate that while the hysteresis is negligibly small, the level of the creep is significant enough to model it and subsequently employ the model to improve steady-state positioning of the actuator. Based on experimental results, a viscoelastic model is employed to describe the creep behaviour. The outcomes of this study will pave the way towards understanding of the limitations as well as potential usefulness of conducting polymer actuators in many cutting edge applications ranging from biomedical to micro/nano manipulation systems

    Robust adaptive control of conjugated polymer actuators

    Get PDF
    Conjugated polymers are promising actuation materials for bio and micromanipulation systems, biomimeticrobots, and biomedical devices. Sophisticated electrochemomechanical dynamics in these materials, however,poses significant challenges in ensuring their consistent, robust performance in applications. In this paper aneffective adaptive control strategy is proposed for conjugated polymer actuators. A self-tuning regulator isdesigned based on a simple actuator model, which is obtained through reduction of an infinite-dimensionalphysical model and captures the essential actuation dynamics. The control scheme is made robust againstunmodeled dynamics and measurement noises with parameter projection, which forces the parameter estimates tostay within physically-meaningful regions. The robust adaptive control method is applied to a trilayer polypyrroleactuator that demonstrates significant time-varying actuation behavior in air due to the solvent evaporation.Experimental results show that, during four-hour continuous operation, the proposed scheme delivers consistenttracking performance with the normalized tracking error decreasing from 11% to 7%, while the error increasesfrom 7% to 28% and to 50% under a PID controller and a fixed model-following controller, respectively. In themean time the control effort under the robust adaptive control scheme is much less than that under PID, whichis important for prolonging the lifetime of the actuator

    Robust adaptive control of conjugated polymer actuators

    Get PDF
    Conjugated polymers are promising actuation materials for bio- and micromanipulation systems, biomimetic robots, and biomedical devices. Sophisticated electrochemomechanical dynamics in these materials, however, poses significant challenges in ensuring their consistent, robust performance in applications. In this paper, an effective adaptive control strategy is proposed for conjugated polymer actuators. A self-tuning regulator is designed based on a simple actuator model, which is obtained through reduction of an infinite-dimensional physical model and captures the essential actuation dynamics. The control scheme is made robust against unmodeled dynamics and measurement noises with parameter projection, which forces the parameter estimates to stay within physically meaningful regions. The robust adaptive control method is applied to a trilayer polypyrrole (PPy) actuator that demonstrates significant time-varying actuation behavior in air due to the solvent evaporation. Experimental results show that, during 4-h continuous operation, the proposed scheme delivers consistent tracking performance with the normalized tracking error decreasing from 11% to 7%, while the error increases from 7% to 28% and to 50% under a proportional-integral-derivative (PID) controller and a fixed model-following controller, respectively. In the meantime, the control effort under the robust adaptive control scheme is much less than that under PID, which is important for prolonging the lifetime of the actuator

    Modeling and inverse feedforward control for conducting polymer actuators with hysteresis

    Get PDF
    Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators

    Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    Get PDF
    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller\u27s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers

    Flexible surface electrodes targeting biopotential signals from forearm muscles for control of prosthetic hands: Part 1 - Characterisation of semg electrodes

    Get PDF
    This study is Part 1 of two studies which investigate the use of various flexible surface sensors as an alternative to the gold standard Ag/AgCl surface electromyography (sEMG) electrodes in identifying movement intention from a user during common hand gestures. Three conductive textiles, two commercial conductive elastomers and one E-skin elastomer produced on site were tested as biopotential electrodes to establish the efficacy of each in gathering movement intention from the human brain at the level of the muscle. Testing was performed in vivo on two participants across three hand gestures, with results demonstrating that sEMG electrodes made from a commercially sourced conductive fabric can outperform the traditional Ag/AgCl sEMG electrodes, obtaining substantially larger peak and RMS measurements. Given the disadvantages of Ag/AgCl electrodes over long usage periods, namely their tendency to dry out and significant skin preparation, resulting in variable impedances and skin irritation respectively, the incorporation of flexible surface EMG electrodes in hand prosthetic control systems would increase functionality of the prosthetic devices, consequently increasing the quality of life of prosthetic hand users

    Frequency response of polypyrrole trilayer actuator displacement

    Get PDF
    Conducting polymer trilayers are attractive for use in functional devices, given low actuation voltages, operation in air and potentially useful stresses and strains; however, their dynamic behavior must be understood from an engineering perspective before they can be effectively incorporated into a design. As a step towards the identification of the actuator dynamics, frequency response analysis has been performed to identify the magnitude and phase shift of displacement in response to a sinusoidal voltage input. The low damping of the trilayer operating in air and the use of a laser displacement sensor has allowed the frequency response to be continuously identified up to 100Hz, demonstrating a resonant peak at 80Hz for a 10mm long actuator. Two linear transfer function models have been fitted to the frequency response of the trilayer displacement (i) a 3rd order model to represent the dynamics below 20Hz and (ii) a higher complexity 6th order model to also include the resonant peak. In response to a random input signal, the 3rd order model coarsely follows the experimental identified displacement, while the 6th order model is able to fully simulate the real trilayer movement. Step responses have also been obtained for the 3rd and 6th order transfer functions, with both models capable of following the first 4 seconds of experimental displacement. The application of empirical transfer function models will facilitate accurate simulation and analysis of trilayer displacement, and will lead to the design of accurate positional control systems

    A 3D printed monolithic soft gripper with adjustable stiffness

    Get PDF
    Soft robotics has recently gained a significant momentum as a newly emerging field in robotics that focuses on biomimicry, compliancy and conformability with safety in near-human environments. Beside conventional fabrication methods, additive manufacturing is a primary technique to employ to fabricate soft robotic devices. We developed a monolithic soft gripper, with variable stiffness fingers, that was fabricated as a one-piece device. Negative pressure was used for the actuation of the gripper while positive pressure was used to vary the stiffness of the fingers of the gripper. Finger bending and gripping capabilities of the monolithic soft gripper were experimentally tested. Finite element simulation and experimental results demonstrate that the proposed monolithic soft gripper is fully compliant, low cost and requires an actuation pressure below -100 kPa

    Robust motion tracking control of piezoelectric actuation systems

    Get PDF
    This paper proposes a robust control methodology for piezoelectric actuation systems to track specified motion trajectories. This is motivated by the search for an effective control strategy to deal with the problem of nonlinear behaviour in the piezoelectric actuation systems. The basic concept associated with this approach lies in the specification of a target performance and the formulation of a robust control scheme for the system to ensure the convergence of the position tracking error to zero in the presence of parametric uncertainties and hysteresis effect inclusive of other un-modelled disturbances. Stability of the control system is proven theoretically and the robust control methodology is demonstrated to possess a promising tracking ability through the control experiments. Implementation of the control law requires only a knowledge of the estimated parameters and their corresponding bounds as well as the bound of the hysteresis effect including disturbances. Being capable of handling uncertainties and disturbances, the robust control methodology is very attractive in the field of micro/nanomanipulation in which high-precision control applications could be realised

    Robust control framework for piezoelectric actuation systems in micro/nano manipulation

    Get PDF
    Micro/nano manipulation has been identified as one of the key enabling technologies for many emerging challenges. Within this scope, piezoelectric actuators have played major roles in achieving the required nano-resolution motion. This paper proposes a robust control framework for piezoelectric actuation systems to follow specified motion trajectories. The basic concept associated with this methodology lies in the specification of a target performance and the robust control scheme formulation for piezoelectric actuation systems to ensure the convergence of the position tracking error to zero. This control methodology is attractive as its implementation requires only the knowledge of the estimated system parameters and their corresponding bounds, including bound of hysteresis and external disturbances. Feasibility study of the framework for piezoelectric actuation systems in micro/nano manipulation is described. Simulation results validated the suitability of the proposed control approach
    • …
    corecore